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- I this papelf,/wé’ extend;the class of ‘problems that can be effectively com-
piled by parallelizing compilers. This is accomplished with the doconsider con-
struct which would allow these campilers to parallelize many problems in which
substantial loop-level parallelism is available but cannot be detected by standard
compile-time analysis. We describe and experimentally analyze mechanisms used
to parallelize the work required for these types of loops. In each of these met |m<l< e
a new loop structure is produced by modifying the loop to be parallelized. Wealso P
~—~—present the rules by which these loop transformations may be automated in order
that they be included in language compilers. The main application area of our re-
search involves problems in scientific computations and engineering. The worklaad
~—ised in owr experiments includes A mixture of real problems as well as syntheti-
cally generated inputs. From mtf’ extensive tests on (he Encore Muoltimax /320, we
have reached the conclusion that for the types of workloads we have investigated,
sclf-execution almost always performs better than pre-scheduling. Further, ihe im-
provement in performance that accrues as a result of global topological sorting of
indices as opposed to the less expensive local sortinp. is not very significant in the
case of self-execution. o L
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Research Center, Hampton, VA 23665.




1 Introduction

There exist many problems in which substantial parallelisin is available but where
the parallelism cannot be exploited using the two principal concurrent loops described
in the literature: doall and doacross [14] [6]. doall loops do not impose any ordering
on loop iterations while doacross loops impose a partial execution order in the sense
that some of the iterations are forced to wait for the partial or complete execution of
some previous iterations. We propose a new type of loop, the doconsider construct.
The doconsider loop allows loop iterations to be ordered in new ways that preserve
dependency relations and increase concurrency. Often, these sorts of index reorderings
can be done at very low cost and can have substantial benefits.

A variety of systems for restructuring loops and reordering indices have been de-
veloped in the functional language and systolic array generation communities. These
methods rely on being able to detect the existence of uniform or quasi-uniform recur-
rence relations at compile-time. The dependency vectors characterizing these recurrence
relations are examined and a new. hopefully more efficient way of traversing the depen-
dency graph is found. We are able to handle loops whose inter-iteration dependency
may be complex or where the dependences may be determined by variables whose val-
ues are not available until program execution begins. The methods we present here
set up the framework, at compile-time, for performing a loop dependency analysis and
produce a restructured loop that is reorderd on the basis of the information obtained
from the dependency analysis. The actual dependency analysis is performed at the start
of program cxecution. We will show that this kind of analysis can be performed very
quickly and has very substantial payoffs.

Symbolic transformations are used to produce: (1) scheduling procedures that re-
order and repartition index sets of loops and (2) ezecutors or transformed versions of
source code loop structures. These transformed loop structures carry out the calcula-
tions planned in the scheduling procedures. An executor may be regarded as a doacross
loop that executes loop iterations in a modified order.

The scheduling mechanisms we explore are based on a topological sort. The index
set is partitioned into disjoint subsets of indices or wavefronts, such that work pertaining
to all indices in a wavefront may be carried out in parallel. One method called global
scheduling, performs a topological sort of index set and assigns indices to processors
in a way that evenly partitions the work in each wavefrout. In each processor, indices
are scheduled in order of increasing wavefront number. The other method called lo-
cal scheduling. starts out with a fixed assignment of indices to processors and simply
rearranges the local ordering of those indices to improve parallelisim.

We investigate two types of executors in which indices belonging to each wavefront
are partitioned among the processors. In the first executor. based upon pre-scheduling,




global synchronizations <eparate consecutive wavefrouts. In the second executor, whceih
we call self-erecuting, a shared array is used to indicate whether a solution variable has
been calculated. Global synchronizations are replaced by busy waits that ensure that
needed values have been produced before those values are used.

We investigate the performance tradeoffs that characterize the different scheduling
and exccution methods we propose. The investigation uses a complete, commercial
sparse matrix solver (PCGPAK [4]) used to solve a range of linear systems, a synthetic
workload is also emploved. We first clearly delineate the perforinance tradeoffs between
pre-schi~duled and self-executing loops. To fully explain the performance tradeoffs be-
tween these tvpes of loops, we need to be able to quantitatively explain the performance
we are observing. We present a set of experiments and analysis able to account for how
time is spent in the two different kinds of loops.

The method used to rearrange the index set of the loop to be parallelized will de-
termine botl the potential performance benefits that can be gained and the overhead
that must be paid. We study the tradeoffs between local and global index set scheduling
and conclude that for self-executing loops, local scheduling appears to lead to multipro-
cessor performance that is comparable to global scheduling in problems of interest at a
significantly lower overhead cost.

From the results of experiments, we have reached the conclusion that for the types of
workloads we have investigated, self-execution almost always performs better than pre-
scheduling. Further, the improvement in performance that accrues as a result of global
topological sorting of indices as opposed to the less expensive local sorting, is not very
significant in the case of self-execution. Thus, we are left with a 2-dimensional solution
space, as depicted in Figure 1, which pictorially summarizes the findings reported in
this paper.

The rest of this paper is organized as follows: In Section 2, we provide simple rules
that allow the transformation of certain types of loops into different parallel forms.
These rules can be inserted into parallelizing compilers, extending the class of prob-
lems that can be effectively compiled for parallel machines. We describe some of the
related research in Section 3. A simple mathematical model which captures the tradeoff
between load balance and synchronization costs is described in Section 4. The results
of multiprocessor experiments are presented in Section 3. These experiments provide
a quantitative performance study of the schedulers and executors under consideration.
Finally, we stunmarize our findings in Section 6.
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1: do i=1,n
2 x(1) = x(1) + b(i)*x(ia(i))
3: end do

Figure 2: A simple loop
2 The Automated Execution System

2.1 Motivation

In a broad sense, modules of code in parallel programs are either comnpile-time or run-
time schedulable. In order that a code be compile-time schedulable. it needs to possess
sufficient information so that the compiler is able to extract the parallelism and map
and schedule the code. e.g., doall type loops in Fortran{15]. In certain other types
of codes, examination of run-time data is absolutely critical in order to detect hidden
parallelistin. We have been interested in the study of such problems. Within this class of
run-time schedulable codes, there are two main categories, i.e., those that are start-time
schedulable and those that are not.

Codes arc start-tirme schedulable if all data dependences are resolved before the pro-
gram begins execution and if these dependences do not change during the course of
the computation. For codes that are not start-time schedulable, the data dependences
may be determined by functions whose parameters are other funetions, the values of
which are only computed at some unknown point during the computation. In [11], we
present self-execution primitives that aid greatly in the on-the-fly detection of paral-
lelisin in sucli problems. In this present paper, we will ouly be concerned with start-time
schedulable problems.

Standard techniques developed by researchers in the field of parallel imperative com-
pilers can derermine when the data structure that describes the dependency relations
i> not changed during the course of the computation [1].

2.2 Transformation rules for automated system

In this seetion, we describe the rules by which an antomated symbolic manipulator
performs source to source transformation of a sequential user code into a suitable parallel
version. These rules can be included in a conventional parallelizing compiler so that the
class of problems that can be handled by these compilers is extended to include those
that are start-time schednlable.

A loop of the form shown in Figure 2, may be executed many times during the run-




1: doconsider i=1,n
2: x(1) = x(1) + b(i)*x(ia(i))
}

Figure 3: An annotated loop

1: do i=1,nlocal

la: isched = schedule(i)
1b: needed_index = ia(isched)
2a: if (needed_index >= isched) then
2b: x(isched) = xold(isched) +
b(isched)*xold(needed_index);
else
Ba: wvhile (ready(needed_index) .ne. COMPLETED)) end while
3b: x(isched) = xold(isched) +
b(isched)*x(needed_index) ;
Bc: ready(isched) = ready(isched)+1;
endif
enddo

Figure 4: A Self-Executing loop
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ia: do i=1,nlocal

1b: isched = schedule(i)

ic: if (isched .eq. NEWPHASE) then

1d: call global synchronization

else

Ra: needed_index = ia(isched)

2b: if (needed_index .ge. isched) then

2c: x(isched) = xold(isched) +
b(isched)*xold(needed_index)

else
2d: x(isched) = xo0ld(isched) +

b(isched)*x(needed_index)
endif
endif
enddo

Figure 5: A Pre-scheduled Loop




ning of a given program. We refer to this program as simple. ['he data dependences
between the elements of r are determined by the values assigned during program exe-
cution to the data structure /a. A value of the outer loop index 1, 7y has a dependence
on another value of the outer loop index 15 1f the computation of (/) requires x(iy).

In the first version of our system, user programs will need simple annotations which
will direct the compiler to invoke its run-time parallelization modules. This will ap-
ply to complete parallel languages as well as language extensions which have explicit
parallel sections. We propose to provide language extensions using constructs such as
doconsider and forconsider, depending upon the language being extended. An an-
notated user code corresponding to Figure 2 is shown in Figure 3. These constructs
will be used i1 addition to the doall and doacross type loops alrcady provided in such
svstems. Details of these language extensions are currently being finalized. The me-
chanical process by whicli the run-time modules are invoked is described in [12]. Briefly
however, an annotation of the type forconsider will generate code that is able to sort
the indices on a processor in order of increasing wavefront number (details of this sort-
ing procedure are provided in Section 2.3). Next, an appropriate transformation will be
invoked to produce an ezecutor to actually run the code using the newly created index
ordering.

The example code shown in Figure 2 has been chosen for ease of explanation of the
transformations we will present shortly. In the system that we are designing, realistic
codes that tend to be much more complex in structure can and will be handled.

To parallelize such loops. the method we use is as follows: We first partition the
indices of the outer loop of Figure 2 into disjoint sets S;, such that row substitutionsin a
set S, may be carried out independently. To obtain the sets S;. we perform a topological
sort of the dirccted acyclic dependence graph G that describes the dependences between
the outer loop indices. Stage k of this sort is performed by placing into set Sy all indices
of G not poiuted to by graph edges. Following this all edges that cmanated from the
indices in S, are removed. The elements of Si are said to beloug to wavefront k. A
single program multiple data method of problem decomposition is used; the wavefront
information is used to prepare a schedule of outer loop indices to he executed by each
DIOCeSSOL.

The main loop in Figure 4 corresponds to the indices assigned to this processor (line
1). The key point in Figure 4 has to do with line 3a and the while loop which ensures
that an index is never used until it has been computed. Finally, the array ready is used
to maiutain the status of all the indices. In Figure 3. we depict the code transformed
into one that uses barrier synchronization at the end of cach phase. Before this code
is executed. it is assumed that a topological sort of the data dependences is performed
and the end of a plhase is marked by a special flag with the appropriate index on every
processor. A check is made to see if the end of phase is reached and if so, a call is
mnade to global synchronization. The rest of the code is self-explanatory. It should
be noted here that we first partition the index set. Given this static partition each




doconsider i=1i,n
temp = f(i)
do j=1,m
y(i) = y(i)+ temp*y(g{i,j))
enddo
enddo

Figure 6: A nested loop

processor is informed when it should perform work associated with each of its assigned
mdices.

2.3 Efficient Calculation of the Topological Sort

The schedule of outer loop indices for each processor can be obtained by global schedul-
ing, assigning indices to processors in a way that evenly partitions the work in each
wavefront. In each processor, indices are scheduled in order of increasing wavefront
number. Alternately using local scheduling, one begins with a fixed assignment of in-
dices to processors and uses the wavefront information to simply rearrange the local
ordering of those indices to improve parallelism.

The loops in the source code can be transformed to assign a wavefront number to
each loop index. For instance, a loop of the form depicted in Figure 6 is converted to
the transformed loop in Figure 7. Since the wavefront number for each index is one
plus the maximum of the wavefront numbers of the indices on which it depends, one
can simply sweep sequentially through the indices and calculate the wavefront for each
index. Figure 7 depicts a version of the topological sorting procedure. This process
produces an array maxwfy. as shown in Figure 7. Array maxwfy must then be sorted to
produce an execution schedule for the processors.

On the Mnltimax/320. the sequential execution time required for both these opera-
tions tends to be slightly less than the cost of a single triangular solve using the same
matrix. The topological sort can he parallelized to a degree by striping consecutive in-
dices across the processors and by using busy waits to assure that variable values have
heen produced before being used.

While local scheduling is alinost completely parallelizable, it is not clear how one
would efficiently parallelize global scheduling. The interprocessor coordination required
for this rather fine graincd computation appears to be prohibitive in the absence of a
fetch and add primitive.
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do i=1,n
temp = £(i)
mywf = 0

for do j=1,m
mywf = max{maxwfy(g(i,j)),mywsf)
enddo
maxwfy (i) = mywf;
enddo

Figure 7: Computation of Wavefronts

We now provide a short stepwise description of the automated procedure which takes

as input a code of the type shown in Figure 6 and restructures it into a suitable parallel
version. Steps 1 through 3 are performed at compile-time, while steps 4 and 5 are
performed at run-time.

3

. The indices of the computation are logically distributed among the processors in

some specified manner.

. A topological sort code is then generated by the compiler, during program czecu-

tion this code which determines the wavefront number of each index (Figure 7).

. The loop in Figure 6 is transformed into a self-executing or pre-scheduled ver-

sion. with the optional insertion of the code that repartitions indices among the
processors.

. At start of execution. the wavefront numbers are computed and the indices are

sorted on the basis of these wavefronts. The indices may or may not be reparti-
tioned.

5. The actnal computation 1s now performed by each processor on its assigned subset

of indices, using one of the executors that have been generated. as in step 3.

Related Work

The execution of parallel tasks using self-scheduling has received considerable attention.
Lusk and Overbeek [10] implement a self-scheduled mechanism to dynamically allocate
work to processors. While this method has the advantage of simplicity, many of the
more complex dynamic problems that we are interested in solving do not seem to be

9




eastly voriaulared in this framework. Polychronopoulos and Kuck [16] are concerned
with tnc officient execution of doall type loops using run-time self scheduling. While the
efficacy of <elf-scheduling for certain classes of problems on shaved memory machines
1s demonstrated in that paper. more complex problems which cannot be formulated in
a doall setting are not studied. Tang and Yew[19] describe a mechanism to execute
mnltiple nested doall loops. using self-scheduling. It is shown that for certain types of
problems, self-scheduling is more efficient than pre-scheduling using static assignment of
loc - iterations to processors. Krothapalli and Sadayappan[9] describe a method which is
able to remove anti- and output-dependences, by performing an analysis of the reference
pattern generated and using multiple copies of variables in order to simulate a single
assignment language. Cytron[6] discusses the problem of how to schedule doacross loops
with lexically backward dependences by introducing delays in appropriate places in the
code to ensure correctness. A linear programming problem is formulated and solved in
order to calenlate the minimum delays.

Loop restructuring has been used successfully to allow parallelizing compilers to
improve parallelism and enhance performance in memory hierarchies [14], [15],[2].[7].
To our knowledge, there has been no work in the automatic detection of run-time
parallelism along with the restructuring of such loops for efficient scheduling,.

Numerical methods for solving sparse triangular systems have however employed
closely related schemes to reorder operations to increase available parallelism, [3].[18],[5].[8].[17].

As far as performance improvement is concerned. we show the efficacy of our tech-
niques. From a programminglanguage standpoint, we believe that user codes for parallel
machines ought not to include the details of scheduling and mapping. This has several
advantages: program portability will certainly become more feasible and program devel-
opwent time will decrease. We believe that robust transformations which automatically
restructure programs to exploit parallelism will aid in reducing the effort required to
program parallel machines.

4 Description and Analysis of Model Problems

4.1 Model Problems

There are several ways to generate the workload needed to test the various aspects of
the system. Inour experiments. these model problems come from two main sources, 1.c..
the solutions of sparse lincar systems arising from a varicty of partial differential equa-
tions using preconditioned Krylov methods and from parameterized synthetic workload
generators. We examine in particular detail the solution of sparse triangular systems
obtained through incomplete factorizations of matrices arising from discretizations of
the partial differential equations in question on a variety of two and three dimensional
meshies. A description of the problems solved are found in Appendix 1. The solution of

10
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S1: do i=1,n
y(1) = rhs(i)

52 : do j=ija(i),ija(i+1)-1
y(i) = y(1) - a(jI*y(ija(i))
end do
end do

Figure 8: Triangular Solve

these sparse triangular systems accounts for a large fraction of the scquential execution
time of these linear solvers. The dependences encountered in solving these systems in-
hibit the parallelization of the outer loop of row substitutions (S1 in Figure 8). Typically
the number of non-zero elements in a row is too small to allow efficient parallelization
of the inner loop (S2 in Figure 8).

We also present overall performance results for a commercial preconditioned Krylov
solver PCGPAK which was completely parallelized. Parallelization was carried out
using either the pre-scheduled or self-executing constructs presented here. Details of
how the parallelization was carried out are presented in Appendix 2, a much more
detailed account of the PCGPAK results is presented in [4].

For a more general source of matrices, we utilize a a simple workload generator
which is able to incorporate the important parameters such as locality of communica-
tions. volume of coinmunication between nodes etc, in the generation of matrices. The
svnthetic workload generator should have the following properties:

e The output of the generator should approximately be able to describe approxi-
mately some of the real problems we encounter, implying that the workload is not
completely random.

e It should be easy to vary the input parameters of the workload generator to test
certain canonical features of the sofware systeni.

Clearly, having such a generator will provide faster turnaround time for performance
testing and because it will be easy to vary the parameters, the testing of the software
modules will be more robust.

Most of the problems that we have been interested iu solving have the following
charactertistics:

e The computation is defined over a reasonably large index set of values.

e There cxists a phase structure iinplicit in the computation such that not all indices

11




can be executed at the same instant because of certain data dependences that inust

be satistied.

e Usually. iudices interact with other indices that are close by, wlicre closeness is a
feature of the physical problem being solved.

In the first implementation of the workload generator, we have made the following
approximations: The input domain consists of a 2-dimensional mesh of points whose
connections have yet to be established. Each point in the mesh is a unique index of
the computation to be performed using that mesh. The points are numbered using
their natural ordering. We use two probability distributions to model the workload; one
determines the total number of dependency links between an index and other indices in
the domain, the other is used to determine the locality of the links to be forged.

The number of indices that any given index needs to communicate its output with
is given by a Poisson density function, with parameter A. The Poisson approximation
is reasonable because several physical phenomena can be modeled using this random
variable. The density function for this random variable is defined as follows:

pi=PrlX =i =Xe /', i >0

Depending upon the value of A, the probability density can be varied to suit the
problem at hand. Further. the Poisson density function is often used as an approxi-
mation to thie Binomial density function, which is normally inuch more expensive to
compute.

It is known that many problems in nature have the property that spatial regions of
the problem domain tend to interact more intensely with adjacent or close-by regions.
A probability density function that possesses such a property is the geometric density
function. A random variable X has a range 1, 2,... and density function

Pr[X =, =(1 — )oY >0

The interpretation that we ascribe to this density function is as follows: If an index
value b 1, to communicate with an index that is ¢ distant from itself, the set of indices
that are { units away (using the Manhattan metric) from index k is determined. One of
these indices (if any) 1s selected in order to make a connection with A. This process of
making conncetions is continued until all the links are exhausted for cach index. Thus,
we can generate a data-dependeney matrix using the mesh generated by the above
procedure,

In the following subsection, we present the results of experiments by which we de-
termine the performance of the schedulers and executors under consideration.

12
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Figure 9: Assignment of Indices to \Vavefronts
4.2 Analysis of a Model Problem

We will use a model problem to illustrate the performance difference between nsing pre-
scheduing and self-execution. We will examine this by estimating the time thar wonld
be required to solve a lower triangular system generated by the zero fill factorization of
the matrix arising from a rectangular mesh with a five point template. We will use a m
hy n domain and p < min{m,n) processors. We will explicitly take into acconnt only
floating point and synchronization related computations. In Section 5 we demonstrate
experimentally that these assumptions can be used to predict multiprocessor timings
rather accurately.

We assumne that all computations required to solve tlie problem would reguire time
S on a single processor, and that computation of cach point takes tiine T, = S/(mn);
This ignores the relatively minor disparities caused by the matrix rows represented by
points on the lower and the left boundary of the domain.

To understand the relative performance of the two synchronization mechanisims on
this problem, we need to make clear how the indices are mapped onto the machine’s
processors. The global topological sort produces a list of indices sorted by wavefront.
The points in a wavefront arise from an anti-diagonal strip of the domain. For instanee,
in Figure 9, we depict a five by seven domnain with the points in cach wavefront linked

13




Figure 10: Assignment of Indices to Processors

by an antidiagonal stripe. When the points in the domain are naturally ordered the
topological sort produces a list L that picks points on the anti-diagonal strip going from
the upper right point in the strip to the lower left point. This corresponds to arranging
the points in each wavefront in order of increasing index number.

The indices in L are assigned in a wrapped manner, as depicted for the example
problem in Figure 10. When pre-scheduling is used. the computation is divided inte
phases separated by global synchronizations.

A brief inspection of Figure 9 makes it clear that 2 4+ m — 1 phases are required to
complete the computation. Define M C(j) as the maximum number of points computed
by any processor during phase j. The computation time required to complete phase
J is equal to T,MC(j). The computation time required to complete the problem is

consequently
n+m-1

S T,MC(j).

j=1

We now proceed to calculate M C(j). During phase j, a total of j strips must be
computed when 1 < 7 < min(m,n). Since the strips arc assigned in a wrapped manner,

Mc() = 1.

|~
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a3
When min(in,n) < j < n+ m — min(m,n), a total of min(in, n) strips must be
completed during phase j. Due to the wrapped assignment of strips to processors,
. min(m, n)
M) = [T,

Finally when n +m — min(m,n) < j <n+m -1, a total of » + m — j strips must be
computed during phase j so

n+m-—)
p

MC(j)=] 1.

The computation time required to complete the problem is

n4+m-—1
To=T," S MC()
j=1
S min(m,n)-1

= —( Z [%1+(n+m—2min(m,n)+1)[ﬂi_1L]’)”i)_-|+

j=1
n+m-—1 n+m-— ]
2 [———1)
J=m+n-min(m,n)+1 p

By assumption, the sequential tiine to solve the problemis $ = mnT,. The estimated
efficiency E,,, we could achieve in the absence of any source of inefficiency unrelated to
load imbalance would be 7% or

min{m,n)-1

mn( Z [i‘] + (n +m — 2min(m,n) + 1)[@1(%”_71_)-' +

=1
n«{i-l [77, + m — j")—l
j=m4n—min(m.n)+1 p

(2)

We can derive a simpler expression that approximates E,,, by estimating the total
amount of time all processors spend idle due to load imbalance. Let 1 and #i be equal
to the largest multiples of p that are sinaller than 1 and n respectively. During any
phase ) < min(m,n) — 1 when j is not a multiple of p, there are p — j mod p processors
idle. When ; is a multiple of p, no processors are idle. Thus the cumulative processor
idle time for j < min(vii,n) — 1 is:

_ T, min(m,n) 7, (1 - 1) _ T, min(rie, n)(p — 1)

Ltr p 2

3
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Through similar reasoning, the sum of the processor idle time for the last min(rm, 7)) —1
phases is the same.

Between the first and last min(m,n) — 1 phases if min(m, n) is equal to p, no time
1s wasted, otherwise the time lost per phase is

L, = T,(p — min(m,n,; odp)

We can use the above considerations to estimate the cumulative time wasted by all
processors, and use this estimate to calculate the following approximate expression
which gives E,; =
mn
mn 4+ min(h,2)(p—1) + (m+n+1-2min(m,n))(p — min(m,n)) mod p.

(4)

Much of the load imbalance we observe above can be corrected. The failure to
balance is essentially an cnd-effect; e.g., the phase has p + 1 work units with equal
computational demands, but only p processors are available. In {13] we rearrange the
global synchronizations in a way that obtains a tradeoff between improved load balance
and the costs of the global synchronizations. While that mechanism is shown to be
advantageous for some problems, rearrangement of the global synchronizations does
require an extra stage of preprocessing.

Self-execution also eliminates these end effects. In the model problem we are pre-
senting here, we can see that any given row substitution in a wavefront requires only two
solution values from the previous wavefront. It is possible to to concurrently compute
row substitutions in consecutive wavefronts provided that we observe dependences. This
is taken care of naturally since the self-execution busy wait synchronization mechanism
ensures that dependences are in fact observed.

Figure 11 depicts the data dependences between row substitutions in the model
problem. Assume that solution values are available for indices in list L through the
index corresponding to wavefront w, domain strip s. All indices in L up to the index
corresponding to wavefront w + 1, domain strip s will have their dependences satisfied
and can be concurrently calculated.

We can derive an expression for E,,, for the self-executing case. Assuming again
that the time required to compute the solutions is identical for all indices, only the first
and last p — 1 wavefronts contribute to load imbalance. By arguments similar to those
made for the pre-scheduling case, the cumulative processor idle time is p(p — 1). Eyp is
thus given by

mn

mn + p(p~-1)

(5)

If Ty neh 1s the cost of a single global synchronization, the time required to synchronize
sync glc g . {
the pre-scheduled computation is Tyynen times the number of synchronization needed,
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Figure 11: Data Dependences between Indices

i.e. Tyynch(n + m — 1). The self-executing program ensures global synchronization by
incrementing elements of a shared array when variables are calculated. As deseribed
earlier, the shared array is checked to find out which variables have heen solved for
at any given time. The cost of incrementing the array elements is given by T, mn,
where T;,. is the cost of incrementing a single array clement. Since computing cach
solution value is assumed to need two other solution values, the cost of checking the
array elements is estimated by 2T p.cxcmn, where Teper is the cost of checking & shared
memory location. Note that we have accounted scparately for idle time due to load
imbalance; we assume here that we only have to verify that a required solution value is
available.

By modifying the above expressions for E,, to include the synchronization over-
heads, we derive an expression for the ratio between the time required to solve the
model problem using pre-scheduling to that required for solving the problem using «elf-

; . Tyun T ek
execution, R,_,. In the expression below, Ryyncn = =47, R, .= l;m- and Repeck = L-‘;—L’*
» p »

R,_, = [mn+ (L, +2L,)/Tp + Roynen(n + m — D)j[mn(1 + Rine + 2R cheet) + p(p — 1)}

For large n and m = p+1, we expect to find that slightly under half of the processors
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are idle due to load imbalance. The above ratio in the limit of large m becomes

2]-’ + Rsynch (6)
(1) + 1)(1 + Rirzc + 2Rrh€ck)

The above expression suggests that the self-executing program might be expected to
perform substantially better than the pre-scheduled program as long as it is relatively
imnexpensive to check and to increment shared memory. In practice, one often obtains
triangular systems that have a relatively large number of phases with modest amounts
of work to be performed in each phase, as we will see in Section 5. The limit derived
above sheds some insight into these cases.

For m = n the situation is quite different; as n increases we obtain the ratio

1
. 7
14 Rinc + 2Rcheck ( )

If the problemn size increases in both dimensions, the relative contribution of the end
effect load imbalances diminish. The amount of computation to be performed grows
as mn while the number of global synchronizations needed grow as n + m — 1. In
this case, pre-scheduling is preferable to self-execution. In shared memory machines
with fast access to shared memory, there will be only a small difference between the
pre-scheduled and self-executing times.

Many problems of practical interest are somewhat less sparse than the model prob-
lem analyzed here. When such a problem is to be solved using many processors, we
may expect dramatic performance differences between pre-scheduled and self-executing
programs. To illustrate this, we present the rather extreme (from our point of view)
example of solving a n by n dense triangular matrix having unit diagonals using n — 1
processors. Assume Ty, rp, 1s the time required for a floating point multiply and add. The
computation time required to solve this system using self-execution is Tyqzpy(n —1). No
parallelism at all is obtained when one attempts to solve such a system when row sub-
stitutions arc separated by global synchronizations; each row substitution forms its own
wavefront. Tlie sequential computation time and the pre-scheduled computation time
are both T,,,,.,~ 2-1) - Calculated only on the basis of load balance, the self-executing

efficiency E. .. is 3%y while the pre-scheduled Eop is 5.

5 Experimental Results

5.1 Multiprocessor Timings
The experimuental results in this section are organized in the following manner: We
describe the perforinance of PCGPAK using the self-executing and pre-scheduled ex-

ecutors. Next, we perform a detailed analysis of the various timing losses that occur in
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Table 1: Self-Execution vs Pre-Scheduling for PCGPAK 16 Processors of the Encore
Multimax

Test Problem | Pre-Scheduled Self-executing | Sort Time
Time | Efficiency | Time | Efficiency Time
SPE1 1.48 14 0.83 25 0.03
SPE2 2.49 24 1.63 37 0.26
SPE3 3.84 35 3.11 44 0.11
SPE4 1.04 17 0.66 26 0.03
SPES5 6.18 62 5.89 65 0.10
5-PT 3.11 33 2.50 41 0.14
9-PT 6.31 42 4.76 56 0.25
7-PT 4.90 LY 5.41 52 0.19
L5-PT 41.76 50 37.93 56 1.40
L9-PT 64.01 54 54.74 63 0.80
L7-PT 23.20 62 23.51 61 0.79

the code. This detailed analysis does not use PCGPAL, instead we use a separate set
of programs written to study the issues we are investigating. The pre-scheduled execu-
tor’s performance is compared using local and global sorting of the indices based upon
their wavefronts. Because we see that the performance of the pre-scheduled executor
is almost always worse than that of the self-executing version, we restrict some of our
later studies to the self-execution system.

In the case of the synthetic workload, a matrix represented as 65-4-3 implies the
discretization of a 65*65 mesh where the average number of edges leaving a mesh point
equals 4, with a Poisson distribution, and the average distance between connections
being 3, with a geometric distribution.

5.1.1 Pre-scheduled vs. self-execution

Two versions of parallel PCGPAK, a Krylov space solver [4], were produced. In the
first version. the triangular solves and the numeric factorization were implemented using
self-scheduling; in the second the triangular solves and numeric factorization were pre-
scheduled. In both cases, the index set of the outer loop of the appropriate procedure was

partitioned in a wrapped manner. The timings were done on an Encore Multimax/320
with 13 megahertz APC/02 boards and version 2.1 of the FORTRAN compiler.

In Table 1 we present time required to solve the test problems for the pre-scheduled
and self-executing versions of PCGPAK, along with the parallel efficiencies achieved.
Parallel efficiency is defined as the ratio between the time required to solve a problem
by an optimized sequential version of PCGPAK and the product of the time required on
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the same problem by the multiprocessor code multiplied by the number of processors.
The self-executing version of the program yields the highest efficiencies and the lowest
times for all test problems except the small and large problems using the seven point
operator (7-PT and L7-PT). For many of the problems, the timing differences in favor
of the self-executing version of the code are quite substantial. In the SPE problems 1,2
and 4 the self-executing version PCGPAK completes in less than 70 percent of the time
required by the pre-scheduled version.

Overheads in the self-executing version of the program arise from the need to check
and update the shared array which indicates whether needed solution variables or pivot
rows have been computed. In the pre-scheduled version of the program, overheads arise
from the cost of global synchronizations. Overheads aside, it is possible to show that
the parallelism available from the self-executing version of the program is always better
than in the pre-scheduled version. Measured efficiencies for all problems except 7-PT
and L7-PT favor the self-executing version of the program.

In section 5.1.2, we will explain the differing relative performance between the
pre-scheduled and self-executing versions of PCGPAK. This will be done by showing
that for the test problems, we can account in a quantitative manner for the timing
differences between pre-scheduled and self-executing versions of the triangular solves.
We also present in Table 1, the times required to perform the topological sort for each
of the test problems. In each of these test problems, the time required to perform the
topological sort required for global index scheduling was quite small, compared to the
total execution time. Since the scheduling had only to be performed once and was
amortized over a substantial number of iterations, even the relatively expensive global
scheduling did not represent a troublesome overhead. The cost of performing both global
and local scheduling will be examined in much more detail in the following sections.

5.1.2 Where Does the Time Go

We perforined an operation-count based analysis of the parallelism that could be ob-
tained given a particular assignment of indices to processors. The analysis made the
assuinption that the load balance could be characterized solely by the distribution and
scheduling of the floating point operations. The efficiency estimated on this basis will be
called the symbolically estimated efficiency. In tables 2 and 3 respectively, are depicted
symbolically estimated cfficiencies for self-executing and pre-scheduled triangular solves.
The estimates presented are for some of the previously discussed test problems on 16
processors. The parallclisn we anticipate obtaining through the use of self-executing
code is better. frequently by a wide margin.

The efficiencies predicted by operation count based analysis are substantially higher
than those we saw in Section 5.1.1. This is not surprising since the symbolically esti-
mated efficiencies do not take into account a number of important sources of overhead.
We will demonstrate that we can account for these overhead sources in a systematic
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way and use these overhead values to accurately prediet the mnltiprocessor timings in
both self-exccuting and pre-scheduled versions of a standalone program for paralleling
a sparse lower triangular solve.

In Table 2 and 3 we have the actual multiprocessor timings on 16 processors for
lower triangular solves arising from the incompletely factored test problem matrices.
An optimized sequential version of the program was also timed for each of the lower
triangular systems. We depict sequential times divided by the product of the number
of processors used and the symbolically estimated efficiencies (timings are denoted by
1 PE seq. in tables 2 and 3).

The estimates of multiprocessor times obtained in the estimate above are quite
optimistic. To take into account the extra operations that had to be executed by
the parallel version of the program, we timed the multiprocessor program on a single
processor. Tables 2 and 3 show the single processor parallel code timing divided by the
product of the number of processors used and the symbolically estimated efficiencies (1
PE Par.). In performing this calculation, we tacitly assume that load balance effects
of the distribution of work in the multiprocessor program can still be estimated by
taking into account only the distribution ofg loatinripoint calculations. In effect, we are
assuming that the effect of the extra operations required in the multiprocessor program
could be explained by simply adding a fixed overhead to each floating point operation.

Contention for resources such as shared memory and bus access can cause ineffi-
ciencies that are not accounted for by the above estimates. We ran a version of the
multiprocessor code designed to simulate the memory and communications access pat-
terns of the actual program. This version of the code is designed to have a perfect load
balance. When executed on P processors, this program executes the schedules a total
of P times. Each processor ends up executing the schedules assigned to all processors so
that each processor ends up computing the work associated with all of the indices in the
problem. The time required for this program to complete is called the rotating processor
time becausc each processor takes on the work assigned to each other processor with
control being shifted in a rotating fashion.

No synchronization takes place in this version of the codes. The shared array reads
and writes used in the busy wait coordination in the self-executing code still take place
but the program is modified so that no waiting actually has to occur. In the pre-
scheduled version of the program, global synchronizations are not employed. In the
absence of resource contention. we would expect that the time required for the above
computation would be very elose to the time spent running the parallel version of the
codes on a single processor.

In the self-executing case, the time estimate obtained from dividing the rotating pro-
cessor time by the product of the number of processors and the symbolically estimated
efficiency gives a very close cstimate of the actually observed multiprocessor time ( Ro-
tating Estimnate). For the pre-scheduled case, we must include the tinie required for the
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global synchronizations to obtain an accurate prediction of the actual multiprocessor
time (Rotating Estimate + Darrier). When this is done, we get a very good estimate
of the pre-scheduled multiprocessor timings. In using the symbolically estimated effi-
ciencies, we again make the tacit assumption that the extra overhead (except the global
synchronizations) could be explained by adding a fixed overhead to all floating point
operations. Note that while more sophisticated models of overhead are certainly possi-
ble and may be desirable in some cases; we find here that these simple techniques and
assumptions adequately explain the timings we observe.

The sources of the timing differences between pre-scheduled and sclf-executing pro-
grams becomes more apparent in comparing tables 2 and 3. For the 5-PT and SPE? test
problems, the difference in the load balance obtainable through the use of pre-scheduled
and self-executing codes is large enough that the I PE Seq time for the pre-scheduled
code is greater than the Parallel Time for the self-executing program. Even if we had
a hypothetical pre-scheduled code with no overheads except for load imbalance. that
code would still be less efficient than the self-executing program. Recall that the pre-
scheduled program uses global synchronizations in between each phase but does not
need to write into a shared array to keep track of which variables have been calculated.
In a reasonably large problem such as 7-PT where there are relatively few global syn-
chronizations. the overhead required for pre-scheduling is relatively small. Since little
loss due to load imbalance is seen for 7-PT, we are able to see that pre-scheduling gives
a slightly faster timing.

In Table 2 we depict the time required for a doacross loop to execute each tri-
angular solve. We see that the doacross loop is consistently less efficient than either
the prescheduled or self-executing loops. For example in the SPE5 problem, the self-
executing solve requires 23.4 milliseconds. the preschedul2d solve (in Table 3) required
29.0 milliseconds and the doacross version of the solve took 45.0 milliseconds.

Recall that the self-cxecuting loop is a doacross loop with a reordered index set.
We expect tlat the doacross loop will exhibit less concurrency thau the self-executing
I op. Since the doacross loop does not have to perform array references to access the
reordered index set, we expect that the doacross will also be accompanied by smaller
overheads. The results of measurements not presented here confirm that while the
concurrency obtained from doacross loops was quite limited, doacross loop execution
was accompanied by less overhead. On the Multimmax/320 measurments indicate that 4
accessing the reordered index set is relatively expensive and hence the performance
differences hetween the doacross loops and the reordered loops 1s attenuated to some
degree.

5.1.3 Timing Projections

Since we can accurately account for the execution time in the Encore Multimax/320, it
is reasonable to make sonie timing projections. These projections make the assumption
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Table 2: Parallel Time and Estimates for Self-Executing Triangnlar Solves

| Test Phases | Syinbolic | Parallel | Rotating | 1 PE | 1 PE | Doacross
Problem Efficiency | Time | Estimate | Parallel | Seq. Time
SPE2 60 0.89 20.7 20.0 17.9 15.0 33.9
SPES 66 0.96 23.4 21.6 18.5 15.3 45.0
5-PT 124 0.95 18.7 17.6 14.5 12.2 37.1
9-PT 311 0.97 57.9 57.1 51.7 43.2 97.5
7-PT | 58 0.93 56.3 57.6 45.1 38.1 84.1

Table 3: Parallel Time and Estimates for Pre-Scheduled Triangular Solves

Test Phases | Symbolic | Parallel | Rotating | Rotating | 1 PE [1PE
Problem Efficiency | Time | Estimate | Estimate | Parallel | Seq.
| + Barrier
SPE2 60 0.52 32.7 32.8 30.0 26.6 25.6
SPE5 66 0.70 29.0 29.5 26.4 22,6 20.8
5-PT 124 0.61 31.1 31.0 25.2 20.2 18.8
9-PT 311 0.78 80.3 83.9 63.5 56.7 53.9
7-PT 58 0.94 56.2 56.3 53.7 44.0 39.8

that the costs of synchronization, the costs from the extra operations required to run
the parallel versions of the codes and the costs due to contention do not change with the
uumber of processors. If the load balance were perfect, the Best efficiencies in Table 4
wonld be obtained.

The estimate of non load balance related loss (Best in table 4) obtained from timings
on 16 processors is clearly not valid for larger machines if we simply add more processors
to the current machine. The estimate is reasonable if we assume that the capabilities of
ihe shared resources such as interprocessor communication are engineered to scale with
the size of the machine.

It 1s cleinly easier to assure performance characteristics that scale with the number
of processors if one designs machines with distributed memory or a hierarchical shared
memory. We are currently extending such projections to those types of machines, that
work 1s beyonud the scope of this paper but some discussion of that issue can be found
in [12].

In Table 4. we present efficiencies for 16 processors and projected efficiencies for 32
and 64 processors. The projected performance of the pre-scheduled programs deteri-
orates much more rapidly as one increases the number of processors. This difference
is driven by the increasing disparity between symbolically estimated efficiencies in the
two scheduling methods. The differences seen in the Best efficiencies in Table 4 reflect
the varying relative costs of global synchronizationus and array writes in problems with
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Table 4: Estimated Efficiencies for Larger Machines

Text Best 16 Processors | 32 Processors | 64 Processors
Problem | S.E. | P.S. | S.E. P.S. SE. P.S. S.E. P.S.
SPE?2 T3 T8 67 40 58 25 45 12

SPES 65 1 62 49 56 39 46 23
5-PT 65 61 52 27 55 30 34 15
PT 66 70 65 66 64 62 60 55
9-PT 6 G4 3 52 68 26 39 12

[&1]

-1
'

1

different structures. this issue was discussed in Section 5.1.2.

5.1.4 Effects of Local Reordering

In Figure 12. we demonstrate the crucial role played by the synchronization mechanism
in determining performance, when indices are not repartitioned after a topological sort.
We compare the estimated efficiency of the same partition and schedule using global
synchronization and self-executing synchronization in a matrix generated by a 65 by
65 point mesh using a 5 point stencil. Indices were assigned to processors in a striped
manner. i.c. for P processors index ¢ was assigned to processor ¢ modulo P. The
«chedule was produced by performing a topological sort and scheduling indices in each
phase in order of increasing index number. We can see that the results obtained through
the use of global synchronization vary wildly with the number of processors used. This
is w. 'erstandable when we realize that the poor performance arises from the poor
distribution ¢f indices among processors in any given phase. All work assigned to a phase
must be completed before any work corresponding to the next phase can commence.
Often, wmany. if not all the indices in a phase get assigned to a single processor, resulting
in sequential execution for that phase. We saw this effeet to a significant degree in all
of the problems we examined although we carefully selected the 65 by 65 point mesh as
the source of the dramatic performance fluctuations are particularly evident from the
strieture of the problem.

In Figuie 12, we also depict the performance obtained on the model problem when
self-exeenting syuchronization is employed. In a great mauy cases, data from all indices
in & given wavefront are not actually required by each index in the next wavefront. When
«lf-executing synchronization is employed, a pipeline sort of effect may be generated
and we see snbstantial performance benefits. Pre-schednling on the other hand, appears
to be muchi less robust.
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5.1.5 Local v.s. Global Index Set Scheduling

We performed a set of experiments to examine the performance tradcoffs hetween local
and global index set scheduling defined in sections 1. We used only the self-executing
loop structures in the experiments in this section. Recall that when global index set
scheduling is used, the index set is sorted in increasing wavefront order. The index set
is then partitioned between processors in a striped manner. For the local sorting method
is used, the initial partition of indices is maintained, but their ordering is changed based
upon wavefront numbers. In Table 5 we present the sequential time required to solve
each test problem, the times required to perform a sequential and a parallel version of
the sort and the time required to rearrange indices globally. All times in this table are in
milliseconds. We also depict the time required to perform local index set scheduling as
well as the 16 processor Multimax/320 timings obtained using these schedules. The time
required to perform the sequential scheduling is slightly lower than the time needed for
performing a sequential iteration. For example, in the case of SPES3, the time required
to perform tlie sequential sort plus the triangular solve adds up to 220 ms, while a
completely sequential execution takes 240 ms. Because we pay for the sorting only
once. subsequent iterations of the code will show a great advantage for the parallel
code (30 ms vs. 240 ms on 16 processors). The time required to produce a parallelized
global schedule ranged from 17 percent to 61 percent of the time necded for a sequential
iteration.

From Table 5, we can see that local index set scheduling overhead does turn out to be
much less than global index set scheduling overhead, as is to be expected. However, as
far as run times were concerned, local and global scheduling each yiclded better results
than the other for some test problems. For example, in the case of SPE2, global run
time was 21.3 ms and local was 29.6 ms and for SPE3, global gave a run time of 25.1
while local was 22.3 ms.

6 Conclusions and Future Work

There is a hicrarchy of problems with different levels of scheduling complexity that are of
interest to researchers in the field of parallel programming. When the data dependences
of the problem are known at compile-time, task decomposition can automatically be
performed by the compiler. However. there are problems where workloads cannot be
fully characterized during compilation due to data dependences that hecome manifest
at run-time. In [12], we presented our initial results from applying these ideas to pre-
schedulable problems. In this paper, we have extended the ¢lass of problems that can be
effectively compiled by parallelizing compilers. We presented the doconsider construct
which would allow these compilers to effectively parallelize such problems.

In this paper, we have reached the conclusion that for the types of workloads we have

26




Table 3: Global v.s. Local Scheduling

Test Global Local 1 Sequential
Problem | seq | parallel | solve | parallel | solve
sort sort sort
SPE1 43.9 31.0 6.2 14.9 6.0 30.5

SPE2 135.1 48.8 21.3 29.9 29.6 223.2
SPE3 245.0 | 135.0 | 25.1 56.0 22.3 245.0
SPE4 46.1 29.8 6.3 7.1 6.0 47.6
SPE5 191.3 | 100.0 | 30.0 46.0 23.6 240.9
sevenl | 466.5| 203.5 | 57.5 78.0 54.7 615.7
nine.l 465.0 | 153.6 | 58.3 | 100.6 | 62.6 698.3
fivers.l | 148.7 72.1 24.0 38.8 28.8 192.0
65-10-1.5 | 384.8 | 173.6 | 58.8 | 109.6 | 66.8 633.6
65-10-3 | 423.5| 131.7 | 58.5 63.1 79.8 767.5
65-4-1.5 | 284.4 | 106.4 | 344 38.8 44.2 304.9
65-4-3 277.4 101.1 44 .4 35.4 44.3 386.1
65mesh | 213.0 | 149.3 | 30.6 82.0 22.8 241.7

investigated, self-execution almost always performs better than pre-scheduling. Further,
the improvement in performance that accrues as a result of global topological sorting of
indices as opposed to the less expensive local sorting, is not very significant in the case
of self-execution. Thus, we are left with a 2-dimensional solution space, as depicted in
Figure 1, which pictorially summarizes the findings reported in this paper. As regards
program transformations are concerned, we have shown how simple annotations might
be included in parallel languages in order to aid the compiler to create the appropriate
scheduler and executor, given a shared memory architecture.
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1. Appendix 1

1.1. Preconditioncd Krylov Mcthods Background
We b_rieﬂy present the basics of Ktylov methods such as are found in PCGPAK.
Consider a large, sparse, system of lincar equations of the form

Mz=% (1.1)

where M is a real matrix of order N, b is a given vector of length N and z is unknown vector to be
computed.

Given an initial guess zo, Krylov methods generate an approximate solution z; from the translated
Krylov space zq 4+ K; where

I C span{ro, Mro, ..., M*~'rq}.

r; is usually chosen to minimize some norm of its residual b — A z;.

The basic tasks involved in Krylov methods are sparse matrix-vector multiplies with matrix M, additions
of scalar multiples of vectors to other vectors (SAXPYs), and vector inner-products. The latter are used in
determining the linear combination of Krylov vectors to add to the initial guess so as to minimize the norm
of the residual.

Preconditioned Krylov methods consist of using an auxiliary matrix Q = QiQ, to first gencrate the
preconditioned system

(QF'MQ;)Qrz = Qb
. The matrix Q is chosen to be an approximation to M for which it 18 easy to compute Q,“v and Q- 'v for
a vectotr v.

Approximate LU factorization preconditioners have been found to have very favorable convergence
properties. Here we take @ to be LU where L is lower triangular and U is upper triangular. We form L and
U by a process of incomplete factorization in which M is approximately factored in a way that allows only
limited fill to occur.

The preconditioned matrix-vector multiply in the resulting Krylov method consists of doing a forward
and backward sparse triangular solves using L and U as well as the sparse matrix multiplies by M. 'The cost
of performing this incomplete factorization and the costs of solving the resulting triangular systems tends
to be much smaller than the costs associated with an exact factorization because of the enforced sparsity of
the matrices involved.

The computation in PCGPAK is carried out by (1) performing a symbolic incomplete factorization to
determine the sparsity structure of L and U, (2) numeric calculation of the incomplete factorization using the
pteviously calculated sparsity structures and (3) matrix vector multiplies, SAXPYs, vector inner products
and sparse triangular solves.

1.2. The Test Problems
We now present the eight test problems used in our experiments.

Problem 1 This probiem models the pressure equation in a sequential black oil simulation. The grid is
(SPE1) 10 x 10 x 10 with one unknown per gridpoint for a total of 1000 unknowns.

Problem 2 This problem arises from the thermal simulation of a steam injection process. The grid is
(SPE2) 6 x 6 x 5 with 6 unknowns per grid point giving 1080 unknowns. The matrix is a block seven
point operator with 6 x 6 blocks.

Problem 3  This problem comes from an IMPES simulation of a blark oil model. The matrix is a seven

(SPE3) point operator on & 35 x 11 x 13 grid yielding 5005 equations.
Problem 4 This problem also comes from an IMPES simnlation of a black oil model. The matrix is a
(SPE4) seven point operator on a 16 x 23 x 3 grid giving 1104 equations.
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Problem 35 This problem arises from a fully-implicit, simultaneous solution simulation of a black oil

(SPES5) model. It is a block seven point operator on a 16 x 23 x 3 grid with 3 x 3 blocks yielding 3312
equations.

Problem 6 This problem is a five point central difference discretization of the following equation on the
(5-Pt) unit square:

a

G —rv_ )- (e’”—u)+2(:+y)(—'u+ )+(2+m)“ =f

with Dirichlet boundary conditions and f chosen so that the exact solution is
u = re®¥sin(nz)sin(ry).

The discretization grid is 63 x 63 giving 3969 unknowns. The L5-pt problem is the same
problem with a 200 x 200 grid.

Problem T This problem is a nine point box scheme discretization for the following equation on the unit
(9-pt) square: , ,
8 8 8 9
—(5‘;—2“”‘ a—yzu) + 25;u+25§u =f

with Dirichlet boundary conditions and f chosen so that the exact solution is
u = ze*¥sin(xz)sin(ry).

The discretization grid is 63 x 63 giving 3969 equations. The L9-pt problem is the same
problem with a 127 x 127 grid.

Problem 8 This problem is a seven point central difference discretization of the following equation on the
(7-pt) unit cube:

9 zv__ - (e 5u) - 5 rv_ 1 =
— 5 (e u) (e ) (e u)+80(z+y+z) u+(40+1+z+y+z)u..f

with Dirichlet boundary conditions and f chosen so that the exact solution is
= (1-2)(1 - 9)(1 = 2)(1 = e=)(1 = e¥)(1 — e77).

The discretization grid is 20 x 20 x 20 yielding 8000 equations. The L7-pt problem is the same
problem with a 30 x 30 x 30 grid.

2. Appendix II: Parallel Implementations of the Basic Krylov Method

2.1. SAXPY operations, Vector inner-products, and Sparse matrix-vector

The easily parallelizable procedures in the preconditioned Krylov methods implemented here are the
SAXPY operations, the vector inner products and the sparse matrix-vector products. For p processors and
a linear system of order n, the indices from 1 to n are divided into p contiguous groups of roughly equal size.
The *» group is assigned to the i** processor.

2.2. Parallel Triangular Solves and Sparse Numeric Factorizations

2.2.1, Triangular Solves

The triangular solve and the sparse numeric factorization can often be efficiently parallelized once the
matrix dependent data dependencies are known. Refer to Figure 8 for a description of the triangular solve
code.
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2.2.2. Sparse Factorizations

In a straightforward sequential version of gaussian elimination witliout pivoting, consecutive prvof rows
i are used to eliminate any non-zeros in column 1 of all rows i + 1 to N. All non-zeros to the left of row #'s
diagonal are eliminated before a i becomes a pivot row. When all non-zeros to the left of i's diagonal are
eliminated, we say that row { has been stadilized.

The elimination process tends to introduce new non-zeros or fill into the factored matrix. An approxi-
mate factorization can be carried out by selectively supnressing the creation of many of the non-zeros created
during the factorization process. The suppression is performed on the basis of determining how tndirect the
fill was. For instance, all fill created by eliminations using the first matrix row as a pivot row arise directly
from non-zeros present in the original matrix. On the other hand, when row 2 is stabilized, non zeros in
that row may arise directly from a non-zero present in the original malrix or may arise as a result from
fill from row 1. There are a variety of methods used to quantify the indirectness of fill; only fill that is
sufficiently direct is retained and is capable of generating further fill. The specifics of the algorithm used
here to determine which elements are to be retained.

During the course of the computation, each row i undergoes a number of transformations as non-zero
elements in consecutive columns j < i are eliminated by stabilized pivot rows j. When all non zeros in
columns j < i have been eliminated, row i itself is stabilized and may be used as a pivot row in other
eliminations,

The incomplete factorization procedure consists of a symbelic and a numeric factorization. The symbolic
factorization calculates the non-zero structure of the factored matrix, and the numeric factorization computes
the numeric values for the incompletely factored matrix.

The numeric factorization is parallelized in a way that is analogous to the triangular solve. Elimination
in each row i requires the use of a sequence of stabilized pivot rows identified as before by the sparse data
structure ija. (figure13). In parallelizing the numeric factorization, a topological sort of the dependen-
cies pertaining to the outer loop indices is performed. As was shown explicitly for the triangnlar solve,
prescheduled and self-executing versions of the numeric factorization algorithim can be formulated.

S1 doi=t,n

do j=ija(i),ija(i+1)-1
Use pivot row ija(}) to perform elimination on row i
end do

end do

Flgure 13. Schematic Sparse Factorization

2.3. Sparse Symbolic Factorizations

Because the pattern of fill is not known, the data dependencies in symbolic factorization cannot be
analyzed before the algorithm executes. In our implementation of the algorithm, we distribute the rows of
the matrix over processors in a wrapped manner and execute in a self-scheduled fashion.

Since we are dealing with incomplete factorization of sparse matrices, the fill pattern will be sparse.
The columns of row ¢ that are filled in at any given stage of the algorithm are kept sorted in increasing order
in a linked list. Operations on row i with pivot row j require that the list of non-zeros pertaining fc row
i be merged with the list of non-zeros pertaining to pivot row j. Note that becausc this is an incomplete
factorization, some of the non-zero elements in the newly created merged list are omitted.
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